Astronomers see ‘warm‘ glow of Uranus‘s rings

    The rings of Uranus are invisible to all but the largest telescopes -- they weren't even discovered until 1977 -- but they're surprisingly bright in new heat images of the planet taken by two large telescopes in the high deserts of Chile.

    The thermal glow gives astronomers another window onto the rings, which have been seen only because they reflect a little light in the visible, or optical, range and in the near-infrared. The new images taken by the Atacama Large Millimeter/submillimeter Array (ALMA) and the Very Large Telescope (VLT) allowed the team for the first time to measure the temperature of the rings: a cool 77 Kelvin, or 77 degrees above absolute zero -- the boiling temperature of liquid nitrogen and equivalent to 320 degrees below zero Fahrenheit.

    The observations also confirm that Uranus's brightest and densest ring, called the epsilon ring, differs from the other known ring systems within our solar system, in particular the spectacularly beautiful rings of Saturn.

    "Saturn's mainly icy rings are broad, bright and have a range of particle sizes, from micron-sized dust in the innermost D ring, to tens of meters in size in the main rings," said Imke de Pater, a UC Berkeley professor of astronomy. "The small end is missing in the main rings of Uranus; the brightest ring, epsilon, is composed of golf ball-sized and larger rocks."

    By comparison, Jupiter's rings contain mostly small, micron-sized particles (a micron is a thousandth of a millimeter). Neptune's rings are also mostly dust, and even Uranus has broad sheets of dust between its narrow main rings.

    "We already know that the epsilon ring is a bit weird, because we don't see the smaller stuff," said graduate student Edward Molter. "Something has been sweeping the smaller stuff out, or it's all glomming together. We just don't know. This is a step toward understanding their composition and whether all of the rings came from the same source material, or are different for each ring."

    Uranus with rings illustration (stock image, elements furnished by NASA).

    Uranus with rings illustration (stock image, elements furnished by NASA).

    Rings could be former asteroids captured by the planet's gravity, remnants of moons that crashed into one another and shattered, the remains of moons torn apart when they got too close to Uranus, or debris remaining from the time of formation 4.5 billion years ago.

    The new data were published this week in the Astronomical Journal. De Pater and Molter led the ALMA observations, while Michael Roman and Leigh Fletcher from the University of Leicester in the United Kingdom led the VLT observations.

    "The rings of Uranus are compositionally different from Saturn's main ring, in the sense that in optical and infrared, the albedo is much lower: they are really dark, like charcoal," Molter said. "They are also extremely narrow compared to the rings of Saturn. The widest, the epsilon ring, varies from 20 to 100 kilometers wide, whereas Saturn's are 100's or tens of thousands of kilometers wide."

    The lack of dust-sized particles in Uranus's main rings was first noted when Voyager 2 flew by the planet in 1986 and photographed them. The spacecraft was unable to measure the temperature of the rings, however.

    To date, astronomers have counted a total of 13 rings around the planet, with some bands of dust between the rings. The rings differ in other ways from those of Saturn.

    "It's cool that we can even do this with the instruments we have," he said. "I was just trying to image the planet as best I could and I saw the rings. It was amazing."

    Both the VLT and ALMA observations were designed to explore the temperature structure of Uranus' atmosphere, with VLT probing shorter wavelengths than ALMA.

    "We were astonished to see the rings jump out clearly when we reduced the data for the first time," Fletcher said.

    This presents an exciting opportunity for the upcoming James Webb Space Telescope, which will be able provide vastly improved spectroscopic constraints on the Uranian rings in the coming decade.

    The Berkeley research was funded by the National Aeronautics and Space Administration (NNX16AK14G). Work at the University of Leicester was supported by the European Research Council (GIANTCLIMES) under the European Union's Horizon 2020 research and innovation program (723890).

    create

    University of California - Berkeley

    Pig-Pen effect: Mixing skin oil and ozone can produce a personal pollution cloud

    Pig-Pen effect: Mixing skin oil and ozone can produce a personal pollution cloud

    timer29/06/2019

    When ozone and skin oils meet, the resulting reaction may help remove ozone from an indoor environment, but it can also produce a personal cloud of pollutants that affects indoor air quality, according to a team of researchers.

    How octopus arms make decisions

    How octopus arms make decisions

    timer27/06/2019

    Researchers studying the behavior and neuroscience of octopuses have long suspected that the animals' arms may have minds of their own.

    Northern lights‘ ‘social networking‘ reveals true scale of magnetic storms

    Northern lights‘ ‘social networking‘ reveals true scale of magnetic storms

    timer27/06/2019

    Magnetic disturbances caused by phenomena like the northern lights can be tracked by a 'social network' of ground-based instruments, according to a new study from the University of Warwick.

    Scientists map huge undersea fresh-water aquifer off U.S. Northeast

    Scientists map huge undersea fresh-water aquifer off U.S. Northeast

    timer27/06/2019

    In a new survey of the sub-seafloor off the U.S. Northeast coast, scientists have made a surprising discovery: a gigantic aquifer of relatively fresh water trapped in porous sediments lying below the salty ocean. It appears to be the largest such formation yet found in the world. The aquifer stretches from the shore at least from Massachusetts to New Jersey, extending more or less continuously out about 50 miles to the edge of the continental shelf. If found on the surface, it would create a lake covering some 15,000 square miles. The study suggests that such aquifers probably lie off many other coasts worldwide, and could provide desperately needed water for arid areas that are now in danger of running out.